9 research outputs found

    Effects of remote limb ischemic conditioning on muscle strength in healthy young adults: A randomized controlled trial

    Get PDF
    Remote limb ischemic conditioning (RLIC) is a clinically feasible method in which brief, sub-lethal bouts of ischemia protects remote organs or tissues from subsequent ischemic injury. A single session of RLIC can improve exercise performance and increase muscle activation. The purpose of this study, therefore, was to assess the effects of a brief, two-week protocol of repeated RLIC combined with strength training on strength gain and neural adaptation in healthy young adults. Participants age 18-40 years were randomized to receive either RLIC plus strength training (n = 15) or sham conditioning plus strength training (n = 15). Participants received RLIC or sham conditioning over 8 visits using a blood pressure cuff on the dominant arm with 5 cycles of 5 minutes each alternating inflation and deflation. Visits 3-8 paired conditioning with wrist extensors strength training on the non-dominant (non-conditioned) arm using standard guidelines. Changes in one repetition maximum (1 RM) and electromyography (EMG) amplitude were compared between groups. Both groups were trained at a similar workload. While both groups gained strength over time (P = 0.001), the RLIC group had greater strength gains (9.38 ± 1.01 lbs) than the sham group (6.3 ± 1.08 lbs, P = 0.035). There was not a significant group x time interaction in EMG amplitude (P = 0.231). The RLIC group had larger percent changes in 1 RM (43.8% vs. 26.1%, P = 0.003) and EMG amplitudes (31.0% vs. 8.6%, P = 0.023) compared to sham conditioning. RLIC holds promise for enhancing muscle strength in healthy young and older adults, as well as clinical populations that could benefit from strength training

    Recumbent Stepper Submaximal Test response is reliable in adults with and without stroke

    No full text
    <div><p>Purpose</p><p>The purpose of the present study was to determine the reliability of the exercise response (predicted peak VO<sub>2</sub>) using the total body recumbent stepper (TBRS) submaximal exercise test in: 1) healthy adults 20–70 years of age and 2) adults participating in inpatient stroke rehabilitation. We hypothesized that the predicted peak VO<sub>2</sub> (Visit 1) would have an excellent relationship (r > 0.80) to predicted peak VO<sub>2</sub> (Visit 2). We also wanted to test whether the exercise response at Visit 1 and Visit 2 would be significantly different.</p><p>Methods</p><p>Healthy adults were recruited from the Kansas City metro area. Stroke participants were recruited during their inpatient rehabilitation stay. Eligible participants completed 2 TBRS submaximal exercise tests between 24 hours and 5 days at similar times of day.</p><p>Results</p><p>A total of 70 participants completed the study. Healthy adults (n = 50) were 36 M, 38.1 ± 10.1 years and stroke participants (n = 20) were 15 M, 62.5 ± 11.8 years of age. The exercise response was reliable for healthy adults (r = 0.980, p<0.01) and stroke participants (r = 0.987, p<0.01) between Visit 1 and Visit 2. Repeated Measures ANOVA showed a significant difference in predicted values between the two visits for healthy adults (47.2 ± 8.4 vs 47.7 ± 8.5 mL∙kg<sup>-1</sup>∙min<sup>-1</sup>; p = 0.04) but not for stroke participants (25.0 ± 9.9 vs 25.3 ± 11.4 mL∙kg<sup>-1</sup>∙min<sup>-1</sup>; p = 0.65).</p><p>Conclusion</p><p>These results suggest that the exercise response is reliable using the TBRS submaximal exercise test in this cohort of healthy adults and stroke participants.</p></div
    corecore